and Figure 1), concerning the behavior of $V_{2}{ }^{\circ}$ and \bar{v}_{2} as a function of the number of CH_{2} groups in nitrile molecules, would prompt us to enter into a discussion on the suitability of one or another theory, based on group-contribution models, in interpretating experimental data. Moreover, our measurements were carried out at 303.16 K , as reported above, whereas most of the literature data on the subject refer to measurements, on aqueous solutions, at 298.16 K . Therefore, we think that, for a more detailed discussion and a more complete and selfconsistent review of literature data, for the sake of comparison, measurements on dilute aqueous nitrile solutions are needed, at 298.16 K , which will be the subject of the next paper.

Acknowledgment

We are indebted to Luigi Lisbo Parrella for technical assistance.

Registry No. Sulfolane, 126-33-0; acetonitrile, 75-05-8; propionitrile, 107-12-0; butyronitrile, 109-74-0; valeronitrile, 110-59-8; 2-methylpropionitrile, 78-82-0; 2,2-dimethylpropionitrile, 630-18-2.

Literature CIted

(1) Friedman, M. E.; Sheraga, H. A. J. Phys. Chem. 1965, 69, 3795.
(2) Brower, K. R.; Peslak, S.; Elrod, J. J. Phys. Chem. 1969, 73, 207.
(3) Benson, S. W.; Buss, J. H. J. Chem. Phys. 1958, $29,546$.
(4) Franks, F.; Smith, I. H. J. Chem. Soc., Faraday Trans. 2 1987, 63, 2586.
(5) Wen, W. Y.; Salto, S. J. Phys . Chem. 1984, 68, 3693.
(6) Conway, B. E. Ann. Phys. Chem. 1964, 68, 2639.
(7) Jannell, L.; Sacco, A. J. Chem. Thermodyn. 1972, 4, 715.
(8) Jannelli, L.; Sacco, A.; Rakshit, A. K. Z. Naturforsch. 1974, $24,355$.
(9) Jannelli, L.; Lopez, A.; Saiello, S. J. Chem. Eng. Data 1980, 25, 259
(10) Jannelli, L.; Lopez, A.; Jalenti, R.; Silvestri, S. J. Chem. Eng. Data 1982, 27, 28.
(11) Della Monica, M.; Jannelli, L.; Lamanna, U. J. Phys . Chem. 1988, 72, 1068.
(12) Sclacovelli, O.; Jannelli, L.; Della Monica, A. Ga2z . Chim. Ital. 1988, 98, 936.
(13) King, E. J. J. Phys. Chem. 1989, 73, 1220.
(14) Edward, J. T.; Farrell, P. G. Can. J. Chem. 1975, 53, 2965.
(15) Terasawa, S.; Itsuki, H.; Arakawa, S. J. Phys. Chem. 1975, 79, 2345.
(16) Edward, J. T.; Farrell, P. G.; Shahidi, F. J. Chem. Soc ., Faraday Trans. 2 1977, 73, 705, 715.
(17) Nitta, T.; Turek, E. A.; Greenkorn, R. A.; Chao, K. C. AIChE J 1977, 23, 144.
(18) Bondi, A. J. Phys. Chem. 1954, 58, 929.
(19) Bondi, A. J. Phys. Chem. 1984, 68, 441.
(20) Bondi, A. "Physical Properties of Crystals, Liquids and Glasses"; Wiley: New York, 1968, Chapter 14.
(21) Edward, J. T.. J. Chem. Educ. 1970, 47, 261.
(22) Kltaigorodskii, A. J.; Muink, Y. D. Sov. Phys -Dokl. (Engl. Transl.) 1958, 3, 707.
(23) Lopez, A.; Jannelli, L.; Silvestri, S. J. Chem. Eng. Data 1982, 27, 183.
(24) Jannelli, L.; Lopez, A.; Silvestri, S. J. Chem. Eng. Data 1983, 28 , 166.
(25) Lopez, A.; Pansini, M.; Jannelli, L. J. Chem. Eng. Data 1983, $28,173$.
(26) Lopez, A.; Jannelli, L.; Pansini, M. J. Chem. Eng. Data 1983, 28, 176.
(27) Riddick, A. J.; Bunger, W. B. "Organic Solvents", 3rd ed.; Wiley-Interscience: Now York, 1970.
(28) Davies, M. J. Chem. Soc., Faraday Trans. 1982, 58, 1705.
(29) Martinmaa, J. "The Chemistry of Nonaqueous Solvents"; Lagowski, J. J., Ed.; Academic Press: New York, 1976; Vol. IV, Chapter 7, p 253.
(30) Howard, P. B.; Wadsö, I. Acta Chem. Scand. 1970, 24, 145.
(31) Ducros, M.; Gruson, J. F.; Sannier, H. Thermochim. Acta 1980, 36, 39.
(32) Jalenti, R.; Lopez, A.; Azzi, A. Thermochim. Acta 1980, 35, 315.

Partial Molar Volumes of $\mathrm{C}_{2}-\mathrm{C}_{6}$ n-Alkanenitriles and Octanenitrile in Dilute Aqueous Solutions at 298.16 K

Lillana Jannelll, * Mlchele Pansinl, and Roberto Jalentl
Thermodynamics Section, The Institute of Chemistry, Faculty of Engineering, The University of Naples, Naples, Italy

Abstract

Partial molar volumes, \bar{v}_{2}, of acetonitrile, proplonitrie, butyronitrile, valeronifrle, and hexane- and octanenitriles were measured in dillute aqueous solutions, at 298.16 K. Experimental data were correlated to van der Waais volumes, \mathbf{v}_{w}, calculated from thermal data. Equations of the kind $V=a v_{w}+b(a \simeq 1.55)$ were found to be sultable in reproducing both volumes of pure substances and partial molar volumes of solutes in diliute solutions within the limits of experimental errors. The above correlation may be interpreted In terms of an Impenetrable volume larger than v_{w}, presumably because of Intrinsic geometrical factors, which result in reducing the empty volume involved in Interactions. Data on nitriles are analyzed in the Hght of current theories based on group-contribution models.

Introduction

In a previous note (1) we presented data on partial molar volumes, \bar{v}_{2}, of normal and branched $\mathrm{C}_{2}-\mathrm{C}_{5}$ alkanenitriles in dilute sulfolane solutions, at 303.16 K . Some regularities were observed concerning the CH_{2} and CH_{3} group contributions both to volume $V_{2}{ }^{\circ}$ of pure nitriles and to \bar{v}_{2} of nitriles as solutes, as expected.

Furthermore, on the basis of the supposition that only the empty volume of a molecule, $v_{\theta}\left(\simeq V^{\circ}-v_{w}\right.$, to first approximation), could be modified by interactions of any kind, we
calculated the van der Waals volumes, \boldsymbol{v}_{w}, from thermal data by means of an improved method proposed by one of us (2).

We suggested as well a possible criterion for evaluating the relative extent of solute-solvent interactions and solute-solute interactions and hence for classifying the solvent as structure making or breaking. We preferred however, at that time, not to enter into a discussion on the suitability of one or another of current theories (3-5) based on group-contribution models. We proposed the interpretation of experimental data, after the compietion of the picture of nitrile series behavior by means of analogous measurements on aqueous solutions. This is the subject of the present note.

Experimental Section

Conductivity water was obtained by repeated distillations over KMnO_{4} after passage through a mixed-bed ion-exchange-resin column. The conductance of samples collected and stored after degassing, in all-Pyrex glassware, routinely ranged between 0.4×10^{-6} and $1 \times 10^{-6} \Omega^{-1} \mathrm{~cm}^{-1}$.
$\mathrm{C}_{2}-\mathrm{C}_{5}$ n-Alkanenitriles (J. T. Baker Chemical Co.) were purified as reported previously (6). Hexane- and octanenitriles (Aldrich Chemical Co.) were purfied by repeated distillation over $\mathrm{P}_{2} \mathrm{O}_{5}$.

The properties (density, dielectric constants, melting points) of the samples agreed with the most reliable literature data (7).

Solutions were made by weight (reduced to mass) and stored in dark containers. In the case of octanenitrile, because of its

Table I. Densities ($d_{1,2}$) and Volume ($V_{1,2}$) of Water (1)-Acetonitrile (2) Solutions ${ }^{b}$ and Apparent Molar Volumes (ϕ_{2}) and Partial Molar Volumes (\bar{v}_{2}) of Solute at 298.16 K

m	$d_{1,2}$	$V_{1,2}$	ϕ_{2}	\bar{v}_{2}
0.00000	0.997043	1002.966		
0.00239	0.99701	1003.097	54.812	49.372
0.01730	0.99692	1003.802	48.324	47.572
0.04930	0.99672	1005.321	47.769	47.505
0.11300	0.99633	1008.340	47.558	47.442
0.17663	0.99594	1011.357	47.506	47.432
0.24986	0.99550	1014.824	47.459	47.407
0.30394	0.99517	1017.392	47.463	47.421
0.37378	0.99475	1020.703	47.453	47.418
0.42862	0.99442	1023.306	47.455	47.424
0.49892	0.99401	1026.632	47.434	47.408

${ }^{a} V_{1,2}=1002.979+47.416 \mathrm{~m} .{ }^{b}$ Solvent $=$ water; solute $=$ aceto nitrile.

Table II. Densities ($d_{1,2}$) and Volumes ($\left.V_{1,2}\right)^{\text {a }}$ of Water (1)-Propionitrile (2) Solutions ${ }^{b}$ and Apparent Molar Volumes (ϕ_{2}) and Partial Molar Volumes (\bar{v}_{2}) of Solute at 298.16 K

m	$d_{1,2}$	$V_{1,2}$	ϕ_{2}	\bar{v}_{2}
0.00000	0.997043	1002.966		
0.00136	0.99703	1003.054	64.706	64.706
0.00761	0.99697	1003.460	64.915	64.915
0.01431	0.99691	1003.890	64.570	64.570
0.04549	0.99663	1005.895	64.388	64.388
0.08992	0.99623	1008.756	64.391	64.391
0.13717	0.99582	1011.785	64.292	64.292
0.18881	0.99535	1015.120	64.372	64.372
0.22560	0.99506	1017.452	64.211	64.211
0.27851	0.99456	1020.894	64.371	64.371
0.33066	0.99410	1024.223	64.403	64.403
0.37621	0.99370	1027.193	64.398	64.398
${ }^{a} V_{1,2}=1002.966+64.336 m$.	${ }^{b}$ Solvent $=$ water; solute $=$ pro-			
pionitrile.				

very low solubility, particular care was taken in preparing solutions. Weighed nitrile samples were shaken vigorously with a massive weighed sample of solvent every 3 h for 2 or 3 days until homogeneous solutions were obtained.

The density-measuring apparatus and the temperature-controlling equipment were described elsewhere (8). The accuracy for density usually was better than $1 \times 10^{-5} \mathrm{~g} \mathrm{~cm}^{-3}$, but it was lower in the case of octane- and hexanenitrile solutions, whose reported values are the average of two or three measurements on each sample.

For each binary system 7-10 measurements were carried out at different molalities. The selected molalities were dictated by solubility in the case of the less soluble nitriles; in the other cases they ranged between 0.002 and 0.5 m . All measurements were carried out at $298.16 \mp 0.001 \mathrm{~K}$.

Results

The experimental values of density, $d_{1,2}^{298.16 \mathrm{~K}}$, and molalities, m, of the selected $\mathrm{C}_{2}-\mathrm{C}_{6} n$-alkanenitriles and octanenitrile aqueous solutions are summarized in Tables I-VI, where also the average of densities $d_{1}^{298.16 \mathrm{~K}}$ of the solvent before and after each run is reported; from molalities and densities, the volumes $V_{1,2}$ of solutions were calculated and, for each temperature, the apparent molar volume of solute, ϕ_{2}, was derived by using the equation

$$
\begin{equation*}
\phi_{2}=\left(V_{1,2}-1000 / d_{1}\right) / m \tag{1}
\end{equation*}
$$

In the selected molality range, ϕ_{2} values do not depend on dilution; therefore, the partial molar volume $\overline{\mathrm{V}}_{2}$ of the solute was calculated by smoothing equations of the type

$$
\begin{equation*}
V_{1,2}=55.55 \bar{v}_{1}+\bar{v}_{2} m \tag{2}
\end{equation*}
$$

Table III. Densities ($d_{1,2}$) and Volumes ($\left.V_{1,2}\right)^{2}$ of Water (1)-Butyronitrile (2) Solutions ${ }^{b}$ and Apparent Molar Volumes (ϕ_{2}) and Partial Molar Volumes ($\overline{\boldsymbol{v}}_{2}$) of Solute at 298.16 K

m	$d_{1,2}$	$V_{1,2}$	ϕ_{2}	\bar{v}_{2}
0.00000	0.997043	1002.966		
0.00280	0.99703	1003.173	73.929	78.214
0.00849	0.99697	1003.628	77.974	79.388
0.02294	0.99681	1004.791	79.555	80.078
0.03464	0.99665	1005.763	80.745	81.091
0.05472	0.99645	1007.358	80.263	80.482
0.06688	0.99629	1008.363	80.697	80.876
0.07703	0.99621	1009.148	80.254	80.410
0.09730	0.99597	1010.798	80.493	80.617
0.11802	0.99576	1012.449	80.351	80.452
0.17816	0.99508	1017.317	80.551	80.619

${ }^{a} V_{1,2}=1002.954+80.586 m .{ }^{b}$ Solvent $=$ water; solute $=$ butyronitrile.

Table IV. Densities ($d_{1,2}$) and Volumes ($\left.V_{1,2}\right)^{\text {a }}$ of Water (1)-Valeronitrile (2) Solutions ${ }^{\text {b }}$ and Apparent Molar Volumes (ϕ_{2}) and Partial Molar Volumes (\bar{v}_{2}) of Solute at 298.16 K

m	$d_{1,2}$	$V_{1,2}$	ϕ_{2}	\bar{U}_{2}
0.00000	0.997043	1002.966		
0.00480	0.99698	1003.429	96.458	96.667
0.00830	0.99694	1003.762	95.904	96.024
0.00950	0.99692	1003.882	96.421	96.526
0.01370	0.99686	1004.292	96.788	96.861
0.01660	0.99682	1004.575	96.928	96.988
0.02010	0.99678	1004.907	96.567	96.617
0.02180	0.99675	1005.079	96.927	96.972
0.02610	0.99669	1005.498	97.011	97.050
0.02860	0.99667	1005.727	96.538	96.573
0.04140	0.99650	1006.966	96.618	96.643

${ }^{a} V_{1,2}=1002.965+96.728 \mathrm{~m} .{ }^{b}$ Solvent $=$ water; solute $=$ valero nitrile.

Table V. Densities ($d_{1,2}$) and Volumes ($\left.V_{1,2}\right)^{a}$ of Water (1)-Hexanenitrile (2) Solutions ${ }^{b}$ and Apparent Molar Volumes (ϕ_{2}) and Partial Molar Volumes (\bar{v}_{2}) of Solute at 298.16 K

m	$d_{1,2}$	$V_{1,2}$	ϕ_{2}	$\bar{\sigma}_{2}$
0.0000	0.997043	1002.966		
0.0030	0.99700	1003.301	111.667	111.667
0.0053	0.99696	1003.566	113.208	113.208
0.0059	0.99696	1003.624	111.525	111.525
0.0084	0.99692	1003.908	112.143	112.143
0.0119	0.99688	1004.290	111.261	111.261
0.0124	0.99687	1004.348	111.452	111.452
0.0128	0.99686	1004.397	111.797	111.797
0.0138	0.99684	1004.515	112.246	112.246
0.0149	0.99682	1004.642	112.483	112.483
0.0163	0.99681	1004.789	111.840	111.840

${ }^{a} V_{1,2}=1002.966+111.911 \mathrm{~m} .{ }^{b}$ Solvent $=$ water; solute $=$ hexa nenitrile.

Table VI. Densities ($d_{1,2}$) and Volumes ($\left.V_{1,2}\right)^{a}$ of Water (1)-Octanenitrile (2) Solutions ${ }^{b}$ and Apparent Molar Volumes (ϕ_{2}) and Partial Molar Volumes (\bar{v}_{2}) of Solute at 298.16 K

m	$d_{1,2}$	$V_{1,2}$	ϕ_{2}	\bar{v}_{2}
0.0000	0.997043	1002.966		
0.0006	0.99703	1003.054	146.667	148.333
0.0013	0.99702	1003.152	143.077	143.846
0.0016	0.99701	1003.200	146.250	146.875
0.0021	0.99700	1003.273	146.190	146.667
0.0026	0.99699	1003.346	146.154	146.538

${ }^{a} V_{1,2}=1002.965+146.181 \mathrm{~m} .{ }^{b}$ Solvent $=$ water; solute $=$ octanenitrile.
$\overline{\bar{v}}$, being the partial molar volume of water obtained by linear extrapolation of eq 2 at $m=0$.

Table VII. Volumes, $\boldsymbol{V}_{2}{ }^{\circ}$, of Pure Nitriles, Partial Volumes, \bar{v}_{2} and $\left(\bar{v}_{2}\right)_{s}$ in Water and in Sulfolane, Respectively, $\left(\bar{v}_{2}\right)_{s}-\bar{v}_{2}$ Terms, and van der Waals Volumes, v_{w}, at $T=298.16 \mathrm{~K}$

substance	$V_{2}{ }^{\circ}$	\bar{v}_{2}	$\left(\bar{v}_{2}\right)_{\mathrm{s}}$	$\left(\bar{v}_{2}\right)_{\mathrm{s}}-\bar{v}_{2}$	$v_{\text {w }}$
$\mathrm{CH}_{3} \mathrm{CN}$	52.863	47.416	51.57	4.15	$27.75{ }^{\text {a }}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$	70.925	64.336	69.24	4.87	38.15°
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CN}$	87.898	80.586	85.49	4.90	$48.08{ }^{\circ}$
$\mathrm{CH}_{9}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CN}$	107.600	96.728	101.58	4.85	$59.24{ }^{\text {a }}$
$\mathrm{CH}_{9}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CN}$	121.285	111.911			$69.64{ }^{\text {b }}$
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CN}$	154.701	146.181			$90.84{ }^{\text {b }}$

${ }^{a}$ From thermal data (1). ${ }^{b}$ By extrapolation of values referring to lower numbers.
Table VIII. Parameters A_{v} and B_{v} of Linear Equations 3, 4, and 6 Correlating Volumes (V°, \bar{v}, and v_{w}) to the Number of CH_{2} Groups in the Molecule at 298.16 K

homologous series	$A_{V}{ }^{\circ}$	$B_{V}{ }^{\circ}$	$A \bar{v}_{2}$	$B \bar{u}_{2}$	$A_{v_{\text {w }}}$	$B_{v_{\text {w }}}$	substance studied
alkanes	15.98	67.91 (7,13)	14.55	57.38 (4)	$10.45{ }^{\text {a }}$	$27.03^{\text {a }}$	$\mathrm{C}_{5}-\mathrm{C}_{10}$
alcohols	16.69	58.58 (7)	15.74	55.03 (12)	$10.06{ }^{\text {a }}$	$30.37{ }^{\text {a }}$	$\mathrm{C}_{2}-\mathrm{C}_{5}$
diols	16.32	55.81 (7)	16.04	55.63 (4)	10.33^{a}	$32.47{ }^{\text {a }}$	$\mathrm{C}_{2}-\mathrm{C}_{5}$
ethers	16.78	54.20 (7)	16.10	48.28 (4)	$10.24{ }^{\text {a }}$	$27.88{ }^{\text {a }}$	$\left(\mathrm{C}_{2}-\mathrm{C}_{5}\right)_{2}$
amines	16.59	49.82 (7, 9)	15.88	42.26 (9)	$10.23{ }^{\text {b }}$	$24.21{ }^{\text {b }}$	$\mathrm{C}_{3}-\mathrm{C}_{7}$
nitriles	16.91	53.63 (this work)	16.34	47.61	10.53^{a}	$27.53{ }^{\text {a }}$	$\mathrm{C}_{2}-\mathrm{C}_{8}$

${ }^{a}$ Thermal data. ${ }^{b}$ Bondi's data.

Table IX. Homologous Series of Selected Substances for Testing of Theories for a and barameters of Linear Equations $\mathbf{3}^{\prime}$ and 4^{\prime}

homologous series		a	b	ref	a (aq)	b (aq)	members included in eq 3^{\prime} and 4^{\prime}	ref
alkanes		$1.52{ }_{9}$	$26.49{ }_{6}$	7,13	1.39_{2}	$19.74{ }_{5}$	$\mathrm{C}_{5}-\mathrm{C}_{10}$	4
alcohols		1.659	$8.20{ }_{6}$	7	$1.56{ }_{4}$	7.52_{3}	$\mathrm{C}_{2}-\mathrm{C}_{5}$	12
diols		$1.58{ }_{0}$	$4.51{ }_{2}$	14	1.55	$5.21{ }_{2}$	$\mathrm{C}_{2}-\mathrm{C}_{5}$	4
ethers		1.639	$8.51{ }_{4}$	7	1.572	$4.44{ }^{5}$	$\left(\mathrm{C}_{2}-\mathrm{C}_{5}\right)_{2}$	4
ammines		$1.62{ }_{2}$	10.559	7, 9	$1.55{ }_{2}$	4.679	$\mathrm{C}_{4}-\mathrm{C}_{7}$	9
nitriles	water	1.606	9.429	this work	$1.55{ }_{2}$	$4.88{ }_{6}$	$\mathrm{C}_{2}-\mathrm{C}_{8}$	this work
	sulfolane			1	1.57 (s)	8.55 (s)	$\mathrm{C}_{2}-\mathrm{C}_{5}$	1

Each table (Tables I-VI) reports the corresponding equation (eq 2) which reproduces experimental values of volume and hence of density within the limits of experimental error; also \bar{v}_{2} values calculated by smoothing eq 2 are reported in each table. Both volumes, $V_{2}{ }^{\circ}$, and partial molar volumes, \bar{v}_{2}, in aqueous solutions exhibit a linear dependence on the number of CH_{2} groups in the nitrile molecules. This behavior is reproduced by the equations

$$
\begin{align*}
& V_{2}^{0}=58.627+16.906 n\left(\mathrm{CH}_{2}\right) \tag{3}\\
& \bar{v}_{2}=47.612+16.343 n\left(\mathrm{CH}_{2}\right) \tag{4}
\end{align*}
$$

In the case of pure nitriles, hence, a constant group contribution of 16.91 may be assigned to CH_{2}, in good agreement with literature data on homologous normal series which are scattered over 16.3 and 16.8 as reported by Cabani et al. (9). The corresponding datum in the case of dllute aqueous solutions is 16.34 and in dilute sulfolane solutions is $\mathbf{1 6 . 6 3}$. (Reasonably in the case of sulfolane solutions, the CH_{2} group contribution has been calculated, at 298.16 K , from $\overline{\mathrm{v}}_{2}$ values, measured at 303.16 K , on the supposition that the same temperature coefficient could be applied to both $V_{2}{ }^{\circ}$ and \bar{v}_{2} data.)

For the sake of comparison data on nitriles in both sulfolane $\left(\left(\bar{V}_{2}\right)_{s}\right)$ and aqueous ($\left.\bar{v}_{2}\right)$ solutions are summarized in Table VII together with the difference $\left(\bar{v}_{2}\right)_{\mathrm{s}}-\bar{v}_{2}$; a constant shrinkage of 4.87 seems to accompany the transferring of 1 mol of nitrile from sulfolane to a dilute aqueous solution and this according to electrostatic and cage effects of water on polar solutes evidenced by previous literature (10).

Discussion

In our previous paper on this subject, we lllustrated a method for calculating values of v_{w} starting from vaporization enthal-
ples; these values, which otherwise do not differ noticeably from Bondi's (11) data, reflect more falthfully, in our opinion, the real energetic situation of the molecule, since they are drawn from thermal data only. The calculated values of v_{w} for the first four members of the n-alkanenlitrle series are reported in Table VII. In the case of hexane- and octanenitriles, for which thermal data are lacking, v_{w} values are calculated on ascribing to the CH_{2} group a constant contribution of 10.53 as derlved from data concerning lower nitriles.

As already pointed out, all the quantities $V_{2}{ }^{\circ}, \bar{v}_{2},\left(\bar{v}_{2}\right)_{s}$, and \boldsymbol{v}_{w} in Table VII exhibit indeed a linear dependence on $n\left(\mathrm{CH}_{2}\right)$, i. \cdot.

$$
\begin{align*}
& v_{2}{ }^{0}=53.629+16.906 n\left(\mathrm{CH}_{2}\right) \tag{3}\\
& \bar{v}_{2}=47.612+16.343 n\left(\mathrm{CH}_{2}\right) \tag{4}\\
& \left(\bar{v}_{2}\right)_{\mathrm{s}}=52.07+16.629 n\left(\mathrm{CH}_{2}\right) \tag{5}\\
& v_{w}=27.53+10.53 n\left(\mathrm{CH}_{2}\right) \tag{6}
\end{align*}
$$

and more generally

$$
\begin{equation*}
V=B+A n\left(\mathrm{CH}_{2}\right) \tag{7}
\end{equation*}
$$

Then from equation pairs $3,6,4,6$, and 5,6 , by easy mathematical arrangements, eq $3^{\prime}-5^{\prime}$ are derived, which correlate respectively $V_{2}{ }^{\circ}, \bar{v}_{2}$, and $\left(\bar{v}_{2}\right)_{s}$ to van der Waals volumes, v_{w}. These equations are

$$
\begin{align*}
& v_{2}{ }^{\circ}=1.606 v_{w}+9.429 \\
& \bar{v}_{2}=1.552 v_{w}+4.886 \\
& \left(\bar{v}_{2}\right)_{s^{\prime}}=1.579 v_{w}+8.552
\end{align*}
$$

and more generally

$$
V=a v_{w}+b
$$

where the term $a=A / A_{w}=\left(V / v_{w}\right)_{\mathrm{CH}_{2}}$ approximately is 1.6.
In eq 7 ' the volume v_{w} appears indeed multiplied by a factor larger than unity, as if the impenetrable volume were larger than van der Waals volume, presumably because of intrinsic geometrical factors.

Therefore, the term $b=V-a v_{w}$ may be identified with the volume really involved in interactions for all compounds containing a given functional group and it is constant aiong a series.

Reasonably all these conclusions are meaningful only in the limits of validity of the linear dependence on the number of CH_{2} groups in the molecule of quantities which appear in eq 3-6.

Empirical equations like eq 7^{\prime} were found by previous authors $(3,4)$ to be useful in reproducing experimental data in the case of series of homologous substances: cyclic and acyclic alcohols, ethers, ketones, diols, amines, etc.

In Tables VIII and IX the parameters of linear correlation A, B, a, and b are reported. For the sake of homogenelty the analysis is limited to the first four or five members of each homologous series, which are liquid in the standard state. As expected, the term a may be regarded as a constant, for both pure substances and dilute aqueous solutions. It reflects the constant contributions of CH_{2} groups to V°, \bar{v}_{2}, and v_{w}. The term b on the contrary, is characteristic of each series, involving the effects of the functional group present in the molecule responsible for interactions. Therefore, the magnitude of the term b, as well as its change from a solvent to another, might be indicated as a criterion for detecting the extent of interactions of any kind and evidencing the structure-making or -breaking solvent effect.

As a general rule a shrinkage is indeed evidenced in transferring 1 mol of substance from pure state to a dilute aqueous solution according to the above-quoted water effects on polar
solutes. Diols seem to be an exception since the term b is larger for water solutions (5.212) than for pure substances (4.512). This behavior is only apparently anomalous. The increase of the term b in aqueous solutions may well be ascribed to the destruction by water of hydrogen bonds between OH groups present in diol molecules, which counterbalance in excess the effects of interactions of diols with water.

Acknowledgment

We are indebted to Luigi Lisbo Parrella for technical assistance.

Reglatry No. $\mathrm{CH}_{3} \mathrm{CN}, 75-05-8 ; \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}, 107-12-0 ; \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CN}$, 109-74-0; $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CN}, 110-59-8 ; \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CN}, 628-73-9 ; \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CN}$, 124-12-9.

Literature Cited

(1) Jannelli, L.; Pansini, M.; Jalenti, R. J. Chem. Eng, Data, previous paper in this issue.
(2) Jalentl, R.; Lopez, A.; Azzi, A. Thermochim. Acta 1980, 35, 315.
(3) Teresawa, S.; Itsuki, A.; Arakawa, S. J. Phys . Chem. 1975, 79, 2345.
(4) Edward, J. T.; Farrell, P. G.; Shahidi, F. J. Chem. Soc., Faraday Trans. 1977, 73, 705, 715.
(5) Nitta, T.; Turex, E. A.; Greenkorn, R. A.; Chao, R. C. AIChE J. 1971, 23, 144.
(6) Lopez, A.; Jannell, L.; Silvestri, S. J. Chem. Eng. Data 1982, 27, 183.
(7) Riddick, A. J.; Bunger, W. B. "Organic Solvents", 3rd ed.; Wiley-Interscience: New York, 1970.
(8) Jannelli, L.; Lopez, A.; Saiello, S. J. Chem. Eng. Data 1980, 25, 259.
(9) Cabani, S.; Conti, G.; Lepori, L. J. Phys. Chem. 1972, 76, 1338; 1974, 78, 1930
(10) Millero, F. J. "Water and Aqueous Solutions"; Horne, R. A., Ed.; WileyInterscience: New York, 1972; pp 519, 566.
(11) Bondi, A. J. Phys. Chem. 1984, 68, 441.
(12) Alexander, M. J. Chem. Eng. Data 1959, 4, 252.
(13) Treszczanowicz, A. J.; Kiyohara, O.; Benson, G. C. J. Chem. Thermodyn. 1981, 13, 253.
(14) "Handbook of Chemistry and Physics", 58th ed.; CRC Press: Cleveland, OH 44128, 1977-78.

Received for review June 28, 1983. Accepted November 28, 1983.

Binary Vapor-Liquid Equillibria of Carbon Dioxide with 2-Methyl-1-pentene, 1-Hexene, 1-Heptene, and m-Xylene at 303.15, 323.15, and 343.15 K

Juan H. Vera* and Hasan Orbey
Department of Chemical Engineering, McConnell Engineering Building, McGlll University, Montreal, PQ, Canada H3A 2A7

Abstract

Binary vapor-llquid equillbrlum data at 303.15, 323.15, and 343.15 K for the systems $\mathbf{C O}_{\mathbf{2}}$-2-methyl-1-pentene, CO_{2}-1-hexene, CO_{2}-1-hepiene, and CO_{2}-m-xylene measured in a static equillbrium cell are presented. The data were correlated by using the Peng-Robinson equation of state. The Peng-Robinson equation represents tha data well at all temperatures.

Introduction

Increased interest In tertiary oil recovery by carbon dioxide flooding, and extraction of coal as well as natural products by carbon dioxide, has encouraged studies of vapor-liquid equilibrium of carbon dioxide and unsaturated/aromatic hydrocarbon systems. Carbon dioxide-unsaturated hydrocarbon systems
were previously neglected since they are not of primary importance to the petroleum industry, for which early carbon di-oxide-hydrocarbon data were collected.

In this work, vapor-llquid equlibrium data are reported for the binary systems $\mathrm{CO}_{2}-2$-methyl-1-pentene, CO_{2}-1-hexene, CO_{2}-1-heptene, and $\mathrm{CO}_{2}-m$-xylene at $303.15,323.15$, and 343.15 K over a pressure range of $0-7.5 \mathrm{MPa}$. The data are reduced with the Peng-Robinson (1) equation of state. Tem-perature-independent parameters that allow interpolation of data are obtained.

Experimental Section

A schematic dlagram of the apparatus is shown in Figure 1. The central unit was a blind, stainless-steel, constant-volume cell with an internal capacity of about $250 \mathrm{~cm}^{3}$. The degassed

